捍卫深层神经网络免受对抗性示例是AI安全的关键挑战。为了有效地提高鲁棒性,最近的方法集中在对抗训练中的决策边界附近的重要数据点上。但是,这些方法容易受到自动攻击的影响,这是无参数攻击的合奏,可用于可靠评估。在本文中,我们通过实验研究了其脆弱性的原因,发现现有方法会减少真实标签和其他标签的逻辑之间的利润,同时保持其梯度规范非微小值。减少的边缘和非微小梯度规范会导致其脆弱性,因为最大的logit可以轻松地被扰动翻转。我们的实验还表明,logit边缘的直方图具有两个峰,即小和大的logit边缘。从观察结果来看,我们提出了切换单重损失(SOVR),当数据具有较小的logit rumgins时,它会使用单重损失,从而增加边缘。我们发现,SOVR比现有方法增加了logit的利润率,同时使梯度规范保持较小,并且在针对自动攻击的鲁棒性方面超越了它们。
translated by 谷歌翻译
This study demonstrates the feasibility of point cloud-based proactive link quality prediction for millimeter-wave (mmWave) communications. Image-based methods to quantitatively and deterministically predict future received signal strength using machine learning from time series of depth images to mitigate the human body line-of-sight (LOS) path blockage in mmWave communications have been proposed. However, image-based methods have been limited in applicable environments because camera images may contain private information. Thus, this study demonstrates the feasibility of using point clouds obtained from light detection and ranging (LiDAR) for the mmWave link quality prediction. Point clouds represent three-dimensional (3D) spaces as a set of points and are sparser and less likely to contain sensitive information than camera images. Additionally, point clouds provide 3D position and motion information, which is necessary for understanding the radio propagation environment involving pedestrians. This study designs the mmWave link quality prediction method and conducts two experimental evaluations using different types of point clouds obtained from LiDAR and depth cameras, as well as different numerical indicators of link quality, received signal strength and throughput. Based on these experiments, our proposed method can predict future large attenuation of mmWave link quality due to LOS blockage by human bodies, therefore our point cloud-based method can be an alternative to image-based methods.
translated by 谷歌翻译
The task of out-of-distribution (OOD) detection is vital to realize safe and reliable operation for real-world applications. After the failure of likelihood-based detection in high dimensions had been shown, approaches based on the \emph{typical set} have been attracting attention; however, they still have not achieved satisfactory performance. Beginning by presenting the failure case of the typicality-based approach, we propose a new reconstruction error-based approach that employs normalizing flow (NF). We further introduce a typicality-based penalty, and by incorporating it into the reconstruction error in NF, we propose a new OOD detection method, penalized reconstruction error (PRE). Because the PRE detects test inputs that lie off the in-distribution manifold, it effectively detects adversarial examples as well as OOD examples. We show the effectiveness of our method through the evaluation using natural image datasets, CIFAR-10, TinyImageNet, and ILSVRC2012.
translated by 谷歌翻译
In recent years, various service robots have been introduced in stores as recommendation systems. Previous studies attempted to increase the influence of these robots by improving their social acceptance and trust. However, when such service robots recommend a product to customers in real environments, the effect on the customers is influenced not only by the robot itself, but also by the social influence of the surrounding people such as store clerks. Therefore, leveraging the social influence of the clerks may increase the influence of the robots on the customers. Hence, we compared the influence of robots with and without collaborative customer service between the robots and clerks in two bakery stores. The experimental results showed that collaborative customer service increased the purchase rate of the recommended bread and improved the impression regarding the robot and store experience of the customers. Because the results also showed that the workload required for the clerks to collaborate with the robot was not high, this study suggests that all stores with service robots may show high effectiveness in introducing collaborative customer service.
translated by 谷歌翻译
Search algorithms for the bandit problems are applicable in materials discovery. However, the objectives of the conventional bandit problem are different from those of materials discovery. The conventional bandit problem aims to maximize the total rewards, whereas materials discovery aims to achieve breakthroughs in material properties. The max K-armed bandit (MKB) problem, which aims to acquire the single best reward, matches with the discovery tasks better than the conventional bandit. Thus, here, we propose a search algorithm for materials discovery based on the MKB problem using a pseudo-value of the upper confidence bound of expected improvement of the best reward. This approach is pseudo-guaranteed to be asymptotic oracles that do not depends on the time horizon. In addition, compared with other MKB algorithms, the proposed algorithm has only one hyperparameter, which is advantageous in materials discovery. We applied the proposed algorithm to synthetic problems and molecular-design demonstrations using a Monte Carlo tree search. According to the results, the proposed algorithm stably outperformed other bandit algorithms in the late stage of the search process when the optimal arm of the MKB could not be determined based on its expectation reward.
translated by 谷歌翻译
Recent years have seen progress beyond domain-specific sound separation for speech or music towards universal sound separation for arbitrary sounds. Prior work on universal sound separation has investigated separating a target sound out of an audio mixture given a text query. Such text-queried sound separation systems provide a natural and scalable interface for specifying arbitrary target sounds. However, supervised text-queried sound separation systems require costly labeled audio-text pairs for training. Moreover, the audio provided in existing datasets is often recorded in a controlled environment, causing a considerable generalization gap to noisy audio in the wild. In this work, we aim to approach text-queried universal sound separation by using only unlabeled data. We propose to leverage the visual modality as a bridge to learn the desired audio-textual correspondence. The proposed CLIPSep model first encodes the input query into a query vector using the contrastive language-image pretraining (CLIP) model, and the query vector is then used to condition an audio separation model to separate out the target sound. While the model is trained on image-audio pairs extracted from unlabeled videos, at test time we can instead query the model with text inputs in a zero-shot setting, thanks to the joint language-image embedding learned by the CLIP model. Further, videos in the wild often contain off-screen sounds and background noise that may hinder the model from learning the desired audio-textual correspondence. To address this problem, we further propose an approach called noise invariant training for training a query-based sound separation model on noisy data. Experimental results show that the proposed models successfully learn text-queried universal sound separation using only noisy unlabeled videos, even achieving competitive performance against a supervised model in some settings.
translated by 谷歌翻译
We present a lightweight post-processing method to refine the semantic segmentation results of point cloud sequences. Most existing methods usually segment frame by frame and encounter the inherent ambiguity of the problem: based on a measurement in a single frame, labels are sometimes difficult to predict even for humans. To remedy this problem, we propose to explicitly train a network to refine these results predicted by an existing segmentation method. The network, which we call the P2Net, learns the consistency constraints between coincident points from consecutive frames after registration. We evaluate the proposed post-processing method both qualitatively and quantitatively on the SemanticKITTI dataset that consists of real outdoor scenes. The effectiveness of the proposed method is validated by comparing the results predicted by two representative networks with and without the refinement by the post-processing network. Specifically, qualitative visualization validates the key idea that labels of the points that are difficult to predict can be corrected with P2Net. Quantitatively, overall mIoU is improved from 10.5% to 11.7% for PointNet [1] and from 10.8% to 15.9% for PointNet++ [2].
translated by 谷歌翻译
We construct a corpus of Japanese a cappella vocal ensembles (jaCappella corpus) for vocal ensemble separation and synthesis. It consists of 35 copyright-cleared vocal ensemble songs and their audio recordings of individual voice parts. These songs were arranged from out-of-copyright Japanese children's songs and have six voice parts (lead vocal, soprano, alto, tenor, bass, and vocal percussion). They are divided into seven subsets, each of which features typical characteristics of a music genre such as jazz and enka. The variety in genre and voice part match vocal ensembles recently widespread in social media services such as YouTube, although the main targets of conventional vocal ensemble datasets are choral singing made up of soprano, alto, tenor, and bass. Experimental evaluation demonstrates that our corpus is a challenging resource for vocal ensemble separation. Our corpus is available on our project page (https://tomohikonakamura.github.io/jaCappella_corpus/).
translated by 谷歌翻译
Wireless ad hoc federated learning (WAFL) is a fully decentralized collaborative machine learning framework organized by opportunistically encountered mobile nodes. Compared to conventional federated learning, WAFL performs model training by weakly synchronizing the model parameters with others, and this shows great resilience to a poisoned model injected by an attacker. In this paper, we provide our theoretical analysis of the WAFL's resilience against model poisoning attacks, by formulating the force balance between the poisoned model and the legitimate model. According to our experiments, we confirmed that the nodes directly encountered the attacker has been somehow compromised to the poisoned model but other nodes have shown great resilience. More importantly, after the attacker has left the network, all the nodes have finally found stronger model parameters combined with the poisoned model. Most of the attack-experienced cases achieved higher accuracy than the no-attack-experienced cases.
translated by 谷歌翻译
We discuss an application of Generalized Random Forests (GRF) proposed by Athey et al.(2019) to quantile regression for time series data. We extracted the theoretical results of the GRF consistency for i.i.d. data to time series data. In particular, in the main theorem, based only on the general assumptions for time series data in Davis and Nielsen (2020), and trees in Athey et al.(2019), we show that the tsQRF (time series Quantile Regression Forests) estimator is consistent. Davis and Nielsen (2020) also discussed the estimation problem using Random Forests (RF) for time series data, but the construction procedure of the RF treated by the GRF is essentially different, and different ideas are used throughout the theoretical proof. In addition, a simulation and real data analysis were conducted.In the simulation, the accuracy of the conditional quantile estimation was evaluated under time series models. In the real data using the Nikkei Stock Average, our estimator is demonstrated to be more sensitive than the others in terms of volatility, thus preventing underestimation of risk.
translated by 谷歌翻译